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Toward clinical digital phenotyping: a timely opportunity to
consider purpose, quality, and safety
Kit Huckvale 1, Svetha Venkatesh2 and Helen Christensen 1,3

The use of data generated passively by personal electronic devices, such as smartphones, to measure human function in health and
disease has generated significant research interest. Particularly in psychiatry, objective, continuous quantitation using patients’ own
devices may result in clinically useful markers that can be used to refine diagnostic processes, tailor treatment choices, improve
condition monitoring for actionable outcomes, such as early signs of relapse, and develop new intervention models. If a principal
goal for digital phenotyping is clinical improvement, research needs to attend now to factors that will help or hinder future clinical
adoption. We identify four opportunities for research directed toward this goal: exploring intermediate outcomes and underlying
disease mechanisms; focusing on purposes that are likely to be used in clinical practice; anticipating quality and safety barriers to
adoption; and exploring the potential for digital personalized medicine arising from the integration of digital phenotyping and
digital interventions. Clinical relevance also means explicitly addressing consumer needs, preferences, and acceptability as the
ultimate users of digital phenotyping interventions. There is a risk that, without such considerations, the potential benefits of digital
phenotyping are delayed or not realized because approaches that are feasible for application in healthcare, and the evidence
required to support clinical commissioning, are not developed. Practical steps to accelerate this research agenda include the further
development of digital phenotyping technology platforms focusing on scalability and equity, establishing shared data repositories
and common data standards, and fostering multidisciplinary collaborations between clinical stakeholders (including patients),
computer scientists, and researchers.
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INTRODUCTION
Digital phenotyping1 (or personal sensing2) is the moment-by-
moment, in situ quantification of the individual-level human
phenotype using data from personal digital devices. It seeks to
exploit the potential of data that are automatically generated and
aggregated by smartphones, wearables and other connected
devices to measure (or offer robust proxies for) human behavior
and function in both health and disease. Today, these data
streams include sensor measurements, activity logs and user-
generated content.3

Data-driven, objective measurement of individual function is of
specific interest in psychiatry, which has previously relied almost
exclusively on self-reports of mental health symptoms, which has
few biological markers, and where diagnostic categories remain
unclear.4–6 Building on the widespread adoption of smartphones
as the principal enabling technology, digital phenotyping has
been enthusiastically adopted as a research theme in mental
health. Our searches identified over 80 peer-reviewed publications
since 2015 that focus on digital phenotyping for psychiatric
conditions.
Many of these studies appear to anticipate that digital

phenotyping should play a role in routine clinical practice, for
example by enhancing aspects of clinical diagnosis and treatment
through earlier detection of condition onset, relapse or treatment
response. As a result, there is a timely opportunity to consider
what this vision of clinical digital phenotyping might require in
terms of scope, quality and safety in order to be used in practice.

Three factors motivate this question. The first is the historically
slow pace of translation of health innovations into practice.
Reported lag times of 17 years7 are at least partially accounted for
by mismatches between the outputs of research and what—in
terms of both design and supporting information8—is needed for
adoption. The second, relatedly, is the formalization of approaches
to health technology assessment which act to codify criteria for
adoption, such as cost-effectiveness.9 The third acknowledges the
risk posed by technology change: should it take 17 years to find
practical uses for digital phenotyping, it may well be that the
underlying technologies are obsolete. There is a risk that, without
such consideration, the potential benefits of digital phenotyping
are delayed or not realized because clinically-feasible approaches,
and the evidence required to support clinical commissioning, are
not generated through timely research.
The purpose of this review is to highlight how developments in

digital phenotyping have created a broad range of potential
clinical uses, to identify salient gaps, and to highlight opportu-
nities for action intended to promote future clinical adoption,
quality and safety (summarized in Table 1). The review argues that
a range of developments are needed to accelerate progress,
which include the development of scalable data collection
infrastructure that addresses equity and privacy issues, the
application of methods from machine learning to process and
analyze signals, and the development of validation approaches for
data quality that address challenges of bias and noise inherent in
population-scale phenotypic data. We also highlight the potential
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clinical value of integration between digital phenotyping and
digital interventions in order to accelerate adoption.
Reflecting the topic of this special collection, we draw examples

from mental health in general, and adolescents and young adults,
specifically. This group represents a potentially important target
group for mental health-focused digital phenotyping. Both the
incidence and overall prevalence of serious mental disorders
peaks in those aged 18–30. Unlike younger children who often do
not yet have a personal smartphone, device ownership is
ubiquitous, and—in Australia—higher in this group than in any
other demographic. Nevertheless, the opportunities we identify
are not restricted to this age group or condition area and are of
potential relevance in any clinical domain where digital pheno-
typing is being considered.

Mapping digital phenotyping to potential clinical applications:
examples from youth mental health
There are now a broad range of potential applications for digital
phenotyping with clinical relevance in youth mental health and
that are the subject of active evaluation. These span the breadth
of care stages, from screening, diagnosis, monitoring, and
treatment, including early intervention and relapse prevention.
These are summarized in Table 2 and discussed below. (Because
the primary youth literature is limited, we also include examples of
digital phenotyping that are relevant in youth either because of
the developmental significance of the condition or because the
peak age of onset occurs in this age group.)

Mood disorder identification, tracking, and predicting subsequent
treatment response. Within student and young adults cohorts,
passive detection of activity changes using accelerometry, GPS,
and phone utilization data has shown promise for identifying
individuals at risk for self-reported depression or anxiety10–12 as
well as potential upstream determinants of future mental ill
health, such as self-reported stress.13–17 Although mood disorders
are most commonly clinically diagnosed between the ages of 25
and 30,18 it is increasingly recognized that psychological distress
may predate this by many years, either as subclinical symptoms or
because of delayed help seeking relating to stigma and poor
expectations of clinical support. Digital phenotyping strategies
that can identify these at-risk and un-diagnosed individuals might
offer a way to alleviate significant morbidity and future clinical
demand, as well assist parental and self-monitoring in adolescents
once diagnosis is confirmed.19 Further work is required, however,
to elucidate the relationship between population scale measure-
ment of constructs such as “stress” that are operationalized in
different ways and the ultimate development of mood disorders.
Separately, an important potential opportunity in the clinical

management of depression is predicting treatment response.20

Only 50% of individuals respond to the first treatment they are
offered,21 and lengthy trial-and-error approaches incur significant
patient and health-service costs. Digital phenotyping using voice
analysis22 provides a proof of concept for new methods to predict

treatment response but improvements in prediction accuracy are
now needed to enable clinical uses.

Bipolar disorder and relapse prevention. In bipolar disorder (BPD),
there has been substantial progress in the development of digital-
phenotyping techniques for condition monitoring and relapse
detection. Changes in location and activity patterns,12,23–25

keyboard interaction dynamics,26,27 social phone utilization
metrics24,25,28 (such as calls placed and received) and voice26,29

(for example, captured from phone calls) have been used,
alongside active measures, to predict both manic and depressive
states. Relapse is common in BPD, with 70% of individuals
experiencing deterioration or recurrence within5 years of a manic
episode.30 Despite subtle symptoms routinely being present at up
to 4 weeks31 before relapse, access to timely treatment remains a
major issue, partly because symptoms can be highly patient-
specific31 and partly because comorbid factors, such as drug use
and co-existing psychiatric disease,32 affect the capacity of
individuals to respond effectively. Early-warning sign interventions
that rely on self-monitoring are desirable for young adult BPD
patients33 and effective in increasing time-to-recurrence while
reducing hospitalisation.34 The development of digital
phenotyping-based methods promises early warning sign services
that could be offered to individuals who would otherwise find it
hard to sustain self-monitoring.28,35,36 The first randomized37 and
cohort37 studies are now either underway or will start shortly.

Opioid overdose detection and harm reduction. Opioid overdose
carries a high risk of respiratory failure and death. In 2016, 245
Australians aged 15–34 died of opioid overdose, of which 216
(88%) were accidental.38 This represents a 31% increase in yearly
deaths compared to a decade earlier (6.98 deaths per 100,000 in
2016 compared to 5.33 in 2006). Opioid toxicity is reliably
treatable using the drug naloxone if caught in time, but users
often struggle to identify signs. A smartphone-based, harm-
reduction solution that uses digital phenotyping to detect signs of
respiratory distress39 raises the prospect of reducing accidental
overdoses by, for example, contacting community first responders
to administer naloxone40 or prioritizing those with detected near-
overdoses for methadone therapy in order to avoid future
events.41

Detection of harmful alcohol drinking behaviors and exposures to
alcohol-related messaging. Some of the only phenotyping
literature that focusses explicitly on a youth population has
explored whether alcohol-related exposures can be predicted
using passive monitoring of location data42–47 and, separately, if
alcohol consumption behaviors can be predicted using smart-
phone sensing and activity data.48,49 These uses highlight how
digital phenotyping can also be used for public health purposes
by generating information not only about individuals but
concerning aggregate patterns of behavior that can then be used
to inform structural interventions, for example, ensuring that
retailers are complying with the law in relation to the supply of

Table 1. Seven priorities: opportunities and practical steps for progressing a vision of clinical digital phenotyping

# Priority

1 Applying digital phenotyping to the mechanisms and behaviors underlying psychiatric disorders rather than outcomes alone.

2 Prioritizing research into digital phenotyping according to realistic clinical uses.

3 Anticipating clinical quality, safety and acceptability issues that will act as barriers to implementation and uptake.

4 Combining digital phenotyping with digital interventions.

5 Developing data collection platforms with a focus on issues of equity, trust and privacy.

6 Developing shared data resources to accelerate collaborative research, replication and scale-up studies.

7 Establishing strong collaborations with healthcare professionals, providers and computer science.
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alcohol to minors in locations where problem drinking emerges as
a pattern from digital data.

Identification of risk of suicide in the wild. Automatic natural
language processing of social media posts has been used
successfully to identify individuals with evidence of psychological
distress50–52 that might place them at risk of self-harm or suicide.
Suicide is a leading cause of death amongst children and young
people,53 and predicting rapid escalations in the risk of suicide is a
policy priority, particularly given the development of new,
effective interventions, such as ketamine for rapid reduction of
depressive and suicidal symptoms.54 Proactive screening in online
environments raises important privacy questions but recognizes
that many suicides occur out of the blue, prior to contact with
health professions. Within at-risk populations, signals from
smartphones55 and clinical measurements (such as electrocardio-
graphy to detect heart rate variability56) may offer a discreet way
to provide a safety net.

Gaps and opportunities
Despite the potential described above, today only a few research
and healthcare organizations are collecting digital signals, and
these activities are largely exploratory. The data that result are
small-scale (typically involving a few tens of people monitored for
only a short period of time36), partial, unstandardized and often
not linkable, resulting in multiple, small data “silos”.57 These are
not suitable for robust identification of digital biomarkers
concerning mental illness onset, treatment response or relapse.
They are also often insufficient for effective analysis (for example,
beyond simple correlations), because the data are small-scale and
noisy. The development and application of appropriate methods
for study execution and the analysis of digital phenotyping data
has already been identified as a priority for the future clinical
relevance of the field.58 Sitting alongside this, we perceive several

additional opportunities that collectively stand to accelerate the
clinical impacts of digital phenotyping.

Opportunity 1: applying digital phenotyping to the mechanisms
and behaviors underlying psychiatric disorders rather than
outcomes alone
An emerging template for contemporary studies in digital
phenotyping is to explore through correlations,59,60 modelling61,62

or machine learning,17,63 the relationship between a set of
smartphone-derived sensor and utilization features and the result
of a self-completed outcomes instrument, such as the PHQ-9 for
depression. This approach has yielded new, clinically-relevant
phenomena, such apparent changes in smartphone-measured
sleep continuity64 and location-based activity65 that precede a
major depressive episode by weeks and could therefore have
potential uses for onset and relapse prediction. This kind of data-
led, clinical endpoint-based approach recognizes that there are a
large number of potential sensor and analytics data sources, each
of which may be (at least in advance) of uncertain significance in
relation to a given clinical outcome, as well as being amenable to
any number of summary representations (for example, due to
complex temporality and missingness.66) Nevertheless, we want to
highlight the potential value—both for clinical applications and
research—of a complementary, mechanistic approach that con-
siders not only clinical outcomes but also intermediate functional
and behavioral states,2 as well as disease-related processes, as
potential targets for prediction using digital phenotyping.
Consider, for example, the relationship between cognitive

dysfunction and depression, which typically presents first in early
adulthood.18 Subjective impairment of thought and concentration
forms part of the diagnostic criteria for major depressive
disorder,67 while objective testing consistently identifies a range
of specific functional deficits in executive function (including
processing speed), memory and attention.68–70 These deficits are

Table 2. Spectrum of youth-relevant mental health applications being explored using digital phenotyping

Prevention Screening and early diagnosis Monitoring Treatment

Fostering resilience and health
promoting behaviors

Proactive identification of
undiagnosed conditions and/or
formal confirmation of a specific
condition

Early detection of condition
changes, adverse events, and
relapse

Tailored intervention, engagement
and treatment efficacy monitoring

Stress identification13–17

Passive detection of changes in
self-perceived stress in order to
foster self-regulation and resilience
or trigger proactive help-seeking
before the onset of frank mental
health symptoms.
High-risk alcohol use
detection49,50

Passive identification of high-risk
drinking episodes using activity
and phone utilization data in order
to trigger prevention interventions.

Mood disorder detection10–12

Passive detection of activity
changes using accelerometry,
GPS, phone utilization data in
order to identify individuals at risk
for depression or anxiety.
Suicidality detection51–53

Automatic natural language
processing of social media posts
to identify at-risk individuals.

Mood disorder self-monitoring19

Using activity and location data to
discreetly monitor mood changes as
part of combined parent-child self-
monitoring intervention.
BPD relapse prediction12,23,26–
29,37,38

Passive monitoring for depressive
(using keyboard signals) and manic
(using voice signals) signs indicative
of relapse, enabling “early warning
sign” interventions.
Opioid overdose detection40

Active abnormal respiratory pattern
detection post opioid use using
smartphone “sonar” (combining
speaker and microphone.)
Schizophrenia relapse
prediction124

Passive monitoring for early-
warning signs using accelerometry
and heart variability in order to
detect relapse early and enable
medical intervention.

Depression therapy
enhancement22,112

Sensor-derived signals (e.g. location
information) used to tailor therapy in
order to maximize user engagement
and treatment effect or identify when
treatment is not working.

BPD bipolar disorder
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present at initial diagnosis71,72 and have been identified as
potential trait markers for depression73 in at least a subset of
individuals.72 It is already known that cognitive dysfunction
improves with therapy and may predict specific treatment
response,74,75 such as the likely success of talking therapies,
disease course72 and future neurodegenerative illness.76

This example illustrates firstly how clinically useful opportunities
can exist for measuring specific facets of a disorder rather than its
overall state using digital phenotyping. Being able to quantitate
cognitive change using a phenotyping-based approach is
attractive because current psychometric and neuropsychiatric
tests rarely reflect specific cognitive processes unambiguously,
can be unwieldy, take time, and are poorly standardised.73 Yet,
because cognitive function may predict treatment response,21 it is
attractive as a target for prediction, particularly given the resource
and patient costs associated with the selection of ineffective
therapy.77 The research goal here should be to identify proxies for
cognitive tests which are practical to apply quickly and routinely,
and which offer timely and more precise signals of improvement.
Secondly, the causal and temporal relationships between

cognitive dysfunction and affective symptoms is itself an open
research question that is amenable to exploration using pheno-
typing.73,76 The potential feasibility of discreet, continuous digital
phenotyping in young adults offers a route to address the specific
call for longitudinal studies73 that can assess if and how cognitive
symptoms precede the peak onset of depression in the mid-late
twenties.18 Because depression state accounts for a only small
proportion of the observed variation in cognitive function
between individuals,68 the capacity of digital phenotyping to
capture detailed within-individual data66 is also important.
Thirdly, this focus can act as a rational guide as to what signals

are captured from users’ digital behavior in the first place. For
example, the observation that specific sub-measures of executive
function, such as semantic and phonemic fluency, are significantly
reduced in first episode depression72 reasonably directs attention
to device activities where these capabilities might be exercised,
such as word-finding whilst typing. In BPD, similar metrics have
yielded new potential cognitive markers.26 Effort can then be
directed to the feasibility of collecting these data, for example the
technical ability to monitor a user’s on-screen keyboard versus
understandable potential privacy concerns.
This guided approach is important not only because there is

otherwise a large space of things that could be measured, but
because it is becoming clear that digital phenotyping is not always
optimal for the detection of particular behavioral signals. For
example, sleep detection using smartphones overestimates sleep
duration and underestimates sleep disturbance compared to
formal actigraphy,78 while self-reported mood using experience
sampling methods substantially improves model prediction
compared to digital phenotyping alone in depression.63 Having
reference standards (such as validated functional measurement
instruments) that are conceptually “closer” to the original data
sources should make it easier to critically select, assess and refine
what is used for modelling. Because each measurement comes
with a concrete cost both in terms of implementation and user
experience (e.g. in battery life impact, data transfer costs and/or
perceived impacts on privacy or acceptability) a rational approach
to selection may also help to avoid wasted effort.
The mechanistic approach we describe here emphasizes the

value of the existing physiological measurement and psycho-
metric literature in suggesting intermediate targets for proxy
prediction by digital phenotyping. We are not new in promoting
this type of strategy.2,79,80 For example, Mohr and colleagues
advocate using digital phenotyping to build markers of behavioral
traits and use these, in turn, to explore relationships with higher-
level states.2 Our approach is complementary in advocating a
focus on signs and symptoms with established (or emerging)
direct practical clinical use. Importantly, neither precludes using

these intermediate targets in turn to predict clinical endpoints. It is
an empirical question as to whether models built in this way will
have greater predictive power than those that attempt to link raw
data directly to outcomes, and future work should critically assess
this potential.

Opportunity 2: prioritizing research into digital phenotyping
according to realistic clinical uses
Digital phenotyping strategies, as with any health technology
intended for clinical use, will ultimately need to demonstrate both
efficacy and cost-effectiveness. What is acceptable performance,
however, is substantially contingent on the intended clinical
application. An illustrative comparison can be made for BPD
between screening, e.g. for detecting onset in early adult-
hood,12,81 and monitoring existing patients, e.g. for relapse
detection.28

One argument made in favor of digital phenotyping is that the
ubiquity of consumer digital devices will enhance the reach of the
services that result.5,58 From the point of view of the technical
performance of digital phenotyping-based screening for new
conditions, however, a population-focused strategy cannot escape
the challenges that apply to any screening programme.82 For
example, assuming a point prevalence for clinical BPD of 0.6% in
adolescents,83 any new digital phenotyping screening test would
need to have a specificity of at least 99.4% (assuming perfect
sensitivity, and no targeting other than by age) if the group of
those who positive is not to be dominated by false positives. Even
assuming an appetite for false positives, representative of existing
clinical tests,84 that allows for 10 false alerts for every true case, a
specificity of 94.0% is required. (For context, the best specificity of
the relevant BPD studies we reviewed was 87.2%.12) Specificity
problems may be enough to discount a screening test, given the
dual burden of unnecessary worry in a non-clinical population and
actual healthcare costs associated with managing people who
present incorrectly as screen positives. Parallel issues affect
sensitivity, particularly when differences between healthy and
diseased populations are small or where measured changes
account for only a small proportion of inter-individual variance.70

These issues are not simply theoretical. Commercial digital
phenotyping platforms whose stated purpose is to support
population-scale diagnostic screening are already being piloted
in health systems despite unclear evidence concerning their
psychometric properties.85,86

By contrast, specificity may be less of concern for monitoring of
those with an established condition population for signs of
relapse. The absolute numbers involved are likely be smaller,
limiting the scope for burden on service delivery. Individuals may
find a false positive risk acceptable if this means that genuine
episodes are not missed. And, importantly, these trade-offs can be
explicitly stated in advance so that individuals can make an
informed choice. Finally, established caring relationships might
mean that false positives can be more efficiently triaged out
(based on the known profile of each patient, particularly if digital
phenotyping can be paired with continuous self-monitoring)
without excessive cost or distress. In this scenario, rather than
maximizing specificity, it may well be that sensitivity becomes the
most important issue given the costs and burden associated with
an unmanaged relapse.
Technical test performance is not the only relevant concern.

Established principles for clinical screening programmes82 require,
for example, that conditions have a prodromal phase in which
early intervention yields clinical benefit. Despite interest in digital
phenotyping for Parkinson’s Disease (PD) that focuses on motor
symptoms,87 early therapy is not clearly beneficial for the control
of these symptoms.88 Similarly, for depression the clinical
significance in terms of future progression to depression of
subclinical low mood in otherwise healthy individuals—
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particularly at a population scale—is unclear. Importantly, this
does not imply that these approaches lack value. For example, a
digital phenotyping test deployed prospectively to those who
present with motor symptoms could offer a low-cost aid to
diagnosis (or subtype elucidation) in PD, which is frequently mis-
diagnosed.89–91 Focus could also be directed towards targets that
are modifiable. Unlike motor symptoms, cognitive impairment,
which is prevalent in PD, appears to respond to targeted
intervention, for example using exercise.92 Digital phenotyping
used to either detect or monitor cognitive changes could usefully
inform rational clinical management in early disease (when
intensive clinical monitoring is otherwise not warranted.) Preven-
tion strategies may also be more tolerant of false positive results if
the follow-on intervention is simple, low-cost and generally
acceptable. Many digital interventions could fall into this category
of response.
The differences between the two scenarios outlined at the start

of this section (both ostensibly using digital phenotyping as a
diagnostic test for a defined change in health status) underline
how the choice of application shapes not only the risks and
potential costs involved but the standards to which tests should
be held. While it is not unreasonable to assume that there will be
improvements in classification performance as the field develops,
and while calls for larger scale studies36 (which promise better
performance) are timely, a clear sense of the ultimate clinical goals
remains important to gauge progress. In our view, there is no
reason to delay this. For some applications, it will not be possible
to achieve diagnostic accuracy statistics of 99% or higher. In order
to avoid wasting effort and time, and to ensure that the evidence
base needed to support clinical commissioning develops effec-
tively, consideration of how clinical priorities (whether on grounds
of burden of disease, potential resource saving or unmet need)
intersect with technical feasibility should be a routine feature of
research goal-setting now. Without this, there is a risk of outputs
that have no realistic prospect of being used in clinical practice. At
the very least, these test accuracy statistics should be fully
reported; it is not uncommon to see sensitivity (recall) and the
positive predictive value (precision) being reported, but not
specificity. Study authors may reasonably contend that the
balance of these issues will vary according to setting, provider
risk appetite and patient attitudes. Decision frameworks, such as
net benefit,84 offer researchers a way to model tradeoffs between
costs-harms under a range of clinically realistic scenarios without
having to commit to a particular solution. These kinds of models
should be routinely reported in digital phenotyping studies.

Opportunity 3: anticipating clinical quality, safety and acceptability
issues that will act as barriers to implementation and uptake
Implementation-relevant concepts of quality and safety are well-
operationalized in clinical medicine, for example as the six
Institute of Medicine quality domains.93 These span safety,
effectiveness, patient-centredness, timeliness, efficiency and
equity. While each is relevant from the point of future
implementation of digital phenotyping, several dimensions are
salient.

Person-centered care. Because patients and consumers are the
ultimate gatekeepers of whether it is used, clinical digital
phenotyping will rely on a person-centered approach. For
complex long-term conditions, there are benefits in monitoring
strategies that moderate treatment burden94 by reducing explicit
self-monitoring and the constant reminders of health status and
functional limitations that this can entail. Conversely, some groups
may prefer the active engagement that self- or professionally-
supported care entails. For example, a qualitative study of
potential young adult users of app-based behavior change
interventions found that most were not receptive to the use of

contextual tailoring, of the kind that digital sensing could provide,
to augment these tools.95 Beyond individual preferences, the
potential for consequential impacts on self-management and self-
regulation skills of increasingly automated measurement remains
an open question.
Digital phenotyping relies, both in development and subse-

quent application, on the ongoing willingness of users to grant
access to the various data streams, from on-device sensors to third
party social media, that provide insights into their daily behavior.
There are multiple potential trade-offs that patients and the public
might want to consider in making an informed choice about
whether to consent to pervasive monitoring.96 Privacy and data
governance are understandable topical concerns, given the
repeated identification of poor privacy practices by large internet
companies and repeated failures observed in related consumer
technologies, such health apps.97 The development of digital
phenotyping entails technical choices including where, for
example, data will be processed and stored—particularly if
machine learning models are cloud-based—with real potential
implications on the acceptability of the ultimate solution to users.
In addition, although more trusting of doctors than other groups,
patients appear to be way of sharing certain types of data, such as
location, which is routinely used in digital phenotyping.98

Strategies will therefore be needed to empower providers to
negotiate appropriate access to these data.
How these trade-offs play out will inform the feasibility of

different digital phenotyping approaches. For example, individuals
with a serious mental health issue may be highly motivated to
avoid the risk of relapse even if this requires extensive data about
everyday life, including sources such as voice samples.29 There is
an opportunity for user-centered research that explores the detail
of these compromises.98,99 This should seek to focus effort
towards applications that are likely to be acceptable to both
patients and clinicians (and therefore actually usable), to identify
effective strategies for supporting individuals in making informed
choices about digital phenotyping without the risk of coercion,
and in identifying user “red lines” (for example, about how data
will be handled) that have practical implications for the design
and cost of the technology platforms that underpin digital
phenotyping.

Equity. Equity is a relevant issue in digital phenotyping for at
least three reasons. First, there is a risk of excluding groups of
users if underlying technology development favors certain
commercial platforms or is predicated on sensing or other
technologies only available in latest generation devices. For
example, a majority of studies to date collect data using the
Android mobile device operating system, reflecting technical
challenges in enabling reliable continuous sensing on Apple
devices.36 In Australia, however, for example, Apple devices
account for over half of mobile market share.100 Addressing this
disparity should be a priority, therefore. There is a strategic
opportunity for the research community to proactively engage
with Apple and Google not only to address salient technical
challenges but also to ensure that digital phenotyping is
understood as a valid (and valued) use case. Without this kind
of engagement, there is a risk that unforeseen changes to privacy
rules or platform software will unexpectedly disrupt the function
of digital phenotyping apps.
A second issue relates to the use of machine learning as a

foundational technology for translating digital phenotyping
signals into usable information. Machine learning models trained
in limited populations (such as college students) can demonstrate
unacceptable bias in real-world applications (a problem known as
“distributional shift”101), such as image classifiers trained on
majority white populations that consistently fail in other
groups.102 Selection bias has already been identified as a potential
risk in digital phenotyping studies of BPD.36 Consequently, digital
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phenotyping applications that incorporate machine learning need
to attend to evolving standards and evaluation methods designed
to assure fairness in clinical machine learning.103 These include, for
example, ensuring that test/training populations have the same
distributional characteristics as the populations in which the
digital phenotyping will be used, attending specifically to model
performance in ‘protected groups’ who represent minorities and
those historically subject to inequity, and considering the
potential for digital phenotyping to reinforce existing subtle
biases in the clinical management of patients.103 One immediate
consequence for digital phenotyping research is to challenge the
assumption that convenience samples are routinely good enough
to condition models.
Finally, and relatedly, assumptions about how users interact with

their devices may not be valid for different user groups. For
example, in our experience, many adolescents have limited mobile
data allowances that limit the potential for bulk data collection.
Because the activation of device sensors is associated with
additional power demands, limited battery capacity—or the ability
to charge devices on demand—may also be relevant, for example in
homeless youth.104 Similarly, the assumption that smartphones are
“always carried and always on” may not be valid in older
populations, limiting their ability to derive value from digital
phenotyping strategies that rely on continuous signals. Recognizing
that there may be constraints associated with specific populations
does not mean that nothing can be done. For example, in youth and
other populations who are sensitive to cellular data costs, it may be
feasible to configure digital phenotyping apps that wait for the
availability of a wireless (i.e. no cost) data connection before
attempting to transmit data for analysis. Alternatively, where data
latency needs to be controlled, it may be appropriate to offer
resource to covers the cost of cellular connections. Where device
energy concerns exist, it may be feasible to selectively activate
sensors, for example in response to contextual triggers, to reduce
the total impact on battery life. There is also an opportunity for
future digital phenotyping analyses to routinely model the minimal
data required to generate usable signal.

Efficiency and safety. Particularly in primary care, where practi-
tioner time and resources are constrained, it is imperative that
digital phenotyping strategies can be effectively integrated into
clinical workflows. This means understanding early the value that
healthcare professionals will attach to different forms of informa-
tion arising from digital phenotyping and anticipating practical
concerns such as clinical systems integration – and upstream
requirements, such as certification and data standardization.
A related concern is the validation and safety assurance process

for algorithms intended for clinical use, particularly where these
are based on machine learning techniques that may have subtle,
hard-to-anticipate failure modes.101 The development of standar-
dized approaches for documenting digital phenotyping strategies,
including machine learning feature and algorithm definitions, is an
open opportunity, as are approaches to validation and testing that
can reliably uncover safety-relevant issues.

Opportunity 4: combining digital phenotyping with digital
interventions
Digital phenotyping is anticipated to create clinical value through
“closing the loop” between detecting clinical phenomena and
taking action by using signals to trigger, tailor and deliver
personalized digital treatment or prevention interventions.5 This is
particularly relevant to psychiatry, where the development and
adoption of both personalized treatments and digital interven-
tions is a priority.105 Digital interventions can incorporate health
promotion, lifestyle education, and psychological therapies, and
have a proven record in the treatment and prevention of
depression and anxiety,106 smoking cessation107 and for the

management of diabetes,108 asthma109 and cardiovascular dis-
ease.110 Contextually enhanced eHealth interventions that tailor
advice and guidance to the setting and experiences of indivi-
duals111,112 offer a potential avenue to reduce treatment costs113

while addressing the challenge of poor adherence seen with
current digital interventions.114

Many existing digital phenotyping applications appear to be
already intervention-like, for example integrating experience
sampling as a principal data source and summarizing longitudinal
data used for modelling and prediction in ways that are intended
to be accessible to users. The need to package phenotyping
within an app wrapper for deployment to users’ smartphones
creates an obvious context to extend this with intervention
content that is tailored and responsive to the signals generated
through digital biomarkers in order to return value to users. There
are multiple ways in which this could be achieved. For example,
models resulting from digital phenotyping studies could simply be
integrated into future interventions and used, for example, to
trigger contextual intervention content (Fig. 1a). Or, alternatively,
digital phenotyping data could be used to drive online optimiza-
tion,115 where intervention tailoring models are continuously
updated (Fig. 1b).
Enhancing self-management in this way is a potentially good fit

with stepped care approaches, such as those now established in
the management of mood disorders,116 where objective data-
driven guidance can be used to enhance the capacity of
individuals to effectively self-manage early-stage and less severe
illness. It offers a route to maximize the potential value that can be
extracted from the large amounts of data that are necessary to
drive digital phenotyping by creating a context where data can be
visualized and used for structured self-reflection with a defined
therapeutic purpose. In addition, the use of digital sensing data for
features such as tailoring and soft recommendations—rather than
in formal diagnostic or therapeutic processes—may be more
realistic in terms of safety and technical feasibility. Because within-
individual variation appears to be an effective predictor of
condition onset or change in mental health,66 closed loop
interventions may be particularly valuable here. For example,
future approaches could leverage Bayesian optimization117 to
build n-of-1 predictive models tailored to the specific user. These
closed-loop systems offer a new context to explore mechanisms
and trajectories of illness development and treatment response. In
addition, integration with digital interventions may itself create
entirely new opportunities for digital phenotyping, for example,
using automatically collected data about interactions with the
intervention itself to generate ‘engagement phenotypes’ that can
be subsequently used for tailoring.

Next steps
In order to respond effectively to the opportunities identified
above, practical and coordinated action stands to help accelerate
both research and the ultimate development of real-world health
applications for digital phenotyping.

Development of shared platforms for data collection. One of the
catalysts for digital phenotyping has been the research-led
development of sophisticated open technology platforms such
as Beiwe,1 Purple Robot62 and Monsenso.118 Reflecting the
opportunities identified we have identified above, priorities for
the future development of these platforms should include
addressing equity concerns by supporting Apple devices, antici-
pating information and clinical data governance issues as
platforms move from research to practical uses (for example,
ensuring that cloud-based data processing is within compatible
jurisdictions), incorporating features that can expedite data
validation and quality assurance, and supporting future integra-
tion with digital interventions.
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Development of shared data repositories. Digital phenotyping
studies typically generate rich datasets64 which may be exploited
for multiple analytical purposes. As a result, there is an
opportunity to consider how these might be structured as
reusable resources. For example, the development of biobanks
has resulted in large numbers of research publications, clarity
around researcher market needs and rapid technology develop-
ment. UK Biobank,119,120 opened to research in 2012, provides a
case study of how a single, well-designed, public resource can
make a significant scientific contribution. By 2018, our bibliometric
analysis suggests that research studies using UK Biobank
represented nearly a tenth (9.2%, n= 462/1727) of annual global
biobank-related publications. Of the biobank studies published in
the fifty most important clinical and general science journals in

2018, well over half (57%, n= 77/120) used data from UK Biobank.
For digital phenotyping, potential benefits include avoiding

duplication of effort, accelerating research, opening the field to a
wider range of researchers beyond those already invested in
digital health, and being able to pool datasets to tackle issues of
statistical power and heterogeneity. Acknowledging topical
interest in replicability in psychiatry, there may be specific value
in the collaborative development of data standards. Coordination
is relevant not only to how raw telemetry data are persisted, but
also ensuring consistent acquisition of metadata that affect
analysis (such as originating device types, measurement scale/
precision and demographic details), socializing best practice
around data cleaning and validation pipelines and, where
supervised machine learning is used, documenting feature

Fig. 1 Two models of integration between digital phenotyping and digital interventions. Figures and letters refer to those shown in the
diagram. Model (A) describes a “learn-then-implement” approach where (1) multi-modal digital signals (e.g. sensor data) are combined with
(2) ground-truth data (such as self-reported mental health) and used to learn a digital phenotyping predictive model, for example, predicting
a change in mental health status from GPS and activity data. This model can then be deployed into future interventions (4) to trigger
intervention components based on changes in mental health state predicted by digital signals alone. Model (B) describes a “continuous
learning” approach, where (1) digital signals are automatically collected alongside intervention outcomes data. These are used to (2)
continuously update and refine an intervention model conditioned on some goal, for example achieving a positive change in mental health
status. This model is then used to trigger and tailor different aspects of the intervention (3). The resultant outcomes feed back into the
learning process. Data collected via this approach can also be extracted for analysis (4)
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algorithms so that they can be replicated. Development of shared
repositories for digital phenotyping will also require consideration
of ethics issues, secure storage, linkage potential and logistical
issues of exchange potentially large datasets securely across
different jurisdictions. At the simplest level, collaboration could
involve the development of working groups that work to
harmonize data collection and reporting to expedite replication
and scale-up studies. Nevertheless, we think that more significant
value will be realized by being able to combine and pool data for
reuse. Recognizing this opportunity, in Australia, a multi-center
consortium is being assembled to develop a large-scale pheno-
typing databank. The Black Dog Institute and the Applied Artificial
Intelligence Institute (A2I2) at Deakin University are building a
hybrid data collection platform and data repository that will
permit multiple primary and secondary analysis studies to be
conducted on shared infrastructure (Fig. 2).

Development of multidisciplinary collaborations involving clinical
disciplines, providers, patients, user-centered design, and computer
science. The success of digital phenotyping is contingent on
hospitals, clinicians and health companies wanting to participate
in the development of useful products for their patients and
health care organizations. There is an opportunity for researchers
to engage with these stakeholders to better understand their
priorities and needs in relation to digital phenotyping.
Equally, the willingness of patients and the public to adopt

digital phenotyping technologies should not be assumed.121

Topical user-centered research questions include what expecta-
tions different user groups hold about when and how the clinical
information that digital phenotyping generates should be
returned to them; what ways of presenting, summarizing and
guiding appropriate self-management exist that can create
genuine value for users; and how different groups weight the

potential trade-offs between intrusiveness and personal health
value. Given both the rapid evolution of privacy issues affecting
consumer technologies and the litany of recent high profile
commercial privacy breaches, finding ways to substantively
represent the views of patients and the public on an ongoing
basis should be seen as a strategic priority, not only to understand
the boundaries of what kinds of information can be consumed by
digital phenotyping but to assure that community consent exist to
develop the field in the first place.
There is also a specific need to work alongside the computer

science community to ensure that digital phenotyping research
continues to benefit from the latest developments in machine
learning, the sub-discipline of computer science concerned with
the creation of algorithms and models without relying on explicit
programming. Removing the need for human programming is
also important for interventions, such as personalized digital
therapies involving multiple treatment options, timings, indivi-
dual preferences and capabilities, where the data space is too
complex for humans to easily interpret (or interpret at all) and
where the form of good solutions cannot be specified or
predicted.122 Modelling techniques that can efficiently model
intra-individual variation (even with sparse data) now exist and
are a promising candidate for analyzing personal longitudinal
tracking data. The development of explainer mechanisms and
layered models may also offer new ways to interpret how
individual signals are integrated into predicting clinical phenom-
ena, with relevance for mechanistic insights into the develop-
ment and evolution of clinical conditions, such as depression in
young people. The opportunity to combine these refined or
enhanced phenotype datasets with genetic and imaging data,
along with personal, self-report and health information is likely to
add value to multiple medical research disciplines and accelerate
behavioral health.

Fig. 2 Black Dog Institute/Deakin model for a scalable, integrated multi-user platform for digital phenotyping research Figures and letters
refer to those shown in the diagram. In this model, (1) researchers specify the study design, define which questionnaires and sensors are
required to deliver a digital phenotyping study (and optionally how these are integrated with any intervention components, such as self-
guided therapy.) This specification is then hosted alongside others in a secure online repository. When each study commences, the
specification is automatically downloaded (2) to users’ devices by a digital phenotyping app. This app can be a multi-study coordination tool
that acts to coordinate data collection, a bespoke, study-specific data collection app, or a hybrid data collection intervention. Collected (3) self-
report (e.g. questionnaires and momentary assessments) and (4) digital data (e.g. sensor measurements and device interaction data) is
uploaded automatically to a secure online registry. Platform modules automatically manage potential barriers to data collection, such as user
battery life and limited connectivity, through smart scheduling and caching. Automated processing pipeline (5) normalizes and converts raw
data into standardized intermediate features and labelled outputs using machine learning. Researchers can start to extract registry data (6) as
soon as it is received, accelerating analysis, permitting study designs that involve expert feedback, and allowing any data collection issues to
be identified and addressed early in the research process. Rights management enables future researchers to request from users’ access to
previously-collected data
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CONCLUSIONS
For digital phenotyping to drive benefits in mental health and
other clinical domains, serious consideration must be given to the
practicalities of future clinical application. To be used, and to be
useful, digital phenotyping must fit with established norms of
quality and safety, be cost-effective and feasible. The research
agenda that responds to these challenges will necessarily be
multifaceted and multidisciplinary, spanning consumer and health
stakeholder engagement, implementation science, technical
development, intervention design and economic evaluation.
Importantly, this call should not be interpreted as reducing the
value of basic research into mechanistic or technical aspects of
digital phenotyping that may not have immediate clinical
applications. Nor should it discourage approaches that will
necessitate changes to clinical workflows, training or patient
experience.
Because many serious mental illnesses first present in youth,

and because this group is an enthusiastic adopter of consumer
technologies, the successful development of digital phenotyping
is of specific relevance to the future, effective care of young
people with psychological distress. Only a focused approach will
ensure that today’s young people—rather than some future
generation—start to realize benefits of improved and better
personalized diagnosis, monitoring and intervention.
Equally important is the development of global leadership and

collaboration to tackle head on questions of trust and access to
data, replicability of findings and capacity-building within clinical
workforces for this new science of behavior. Because digital
phenotyping stands to address genuine gaps in assessment and
treatment of mental health issues, psychiatry is particularly well
placed to show leadership in this newest of “big data” disciplines.
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